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Coexistence Curve Equation for Several One- 
Component Fluids in the Vicinity of the Critical Point 1 

E. T. Shimanskaya,  2' 3 Yu. I. Shimansky,  2 and A. V. Oleinikova 2 

Based on the available literature data on the temperature dependence of coexist- 
ing densities near the critical point for Ne, HD, N 2, and C2H4, the disadvan- 
tages of using the extended scaling equation of the coexistence curve with the 
Ising exponent are shown. Combined statistical methods are proposed to 
reanalyze these data. For all the above-mentioned substances, in the range of 
reduced temperature 1.3 x 10-4<  r <6  x 10 -3 to 2 x 10 -2, we obtain for the 
order parameter a single-term fit, with the common value ,6'=0.355. The fit 
describes the experimental densities with an uncertainty of 0.06 to 0.1%. 

KEY WORDS: coexistence curve; critical exponents; critical point; Ising 
model; scaling laws; universality classes. 

1. I N T R O D U C T I O N  

It is generally accepted that precise experimental data for fluids near the 
critical point may be well fitted by scaling equations with Ising critical 
exponents. This conclusion is supported in particular by accurate heat 
capacity and light scattering data. But in application of the power laws 
with the Ising critical exponent to the coexistence curve of one-component 
fluids, it is necessary to include a sufficient number of correction terms [ 1 ]. 
We draw attention to the disadvantages of using the extended scaling equa- 
tions with the Ising exponent fl for describing coexistence curves of simple 
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one-component fluids. The methods of statistical analysis of coexisting 
vapor and liquid densities [2-5] are applied to get a more accurate and 
useful representation. 

2. CALCULATIONS 

We selected the available experimental data from Ref. 6 on the tem- 
perature dependence of coexisting densities of C2H4, N2, Ne, and HD. In 
Ref. 7 these data were approximated by Wegner expansions: 

z/p~ = ( P l  - pg ) (2pc )  - l  

= BpT#+ Bp+arp+a +Bp+2ar/~+2,~ +. . .  

gild =(P l  + Pg)(2P¢) -1 - -  1 

= A o + A l _ ~ r  1-~+Aj_~+~T I -~-4  +. . .  

(1) 

(2) 

where P l and pg are the liquid and vapor densities, T = ( T o -  T ) / T c ,  Pc, and 
Tc are the critical density and temperature, respectively, and Ai and Bi are 
adjustable coefficients. The critical exponents were fixed and were equal to 

fl = 0.325...0.327, A =0.5, 1 --~ = 0.89 (3) 

In our opinion, Eqs. (1) and (2) with exponents given by Eq. (3) raise 
serious objections. Mainly, the residuals from the descriptions of the 
experimental data by the first terms in Eq. (1) for Ne, N2, and C2H 4 
indicate that such a leading term does not describe any experimental point. 
For example, the fit of the experimental data for N2 obtained in Ref. 7 is 
discussed. The temperature dependence of the coxistence densities of N 2 
was fitted in Ref. 7 by a three-term power law (I) with a critical exponent 
given by Eq. (3) in the temperature range 1.8 x 10-2> v > 4.0 x 10 -4. The 
residuals of the fit of the experimental data by the leading term, by the 
leading and the first correction terms and, by the leading and the two 
correction terms, 

S = Aps  - 1.478r °'3253 (4) 

S = A P s -  1.478r °'3253 - 1.56668r °'8253 (5) 

S = Aps -- 1.478r °'3zS3 -- 1.56668r °'8253 + 3.0742r 13253 (6) 

are shown in Fig. 1. 
Obviously, not only the leading term but also the leading and the first 

correction terms are unable to fit adequately any partial temperature range 
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Fig. 1. Residuals S of approximation of the 
experimental data for N 2 by the leading term 
[Eq. (4); *], by the leading and first correction 
terms [Eq.(5); ©],  and by the leading and two 
correction terms [Eq. (6); O],  with the exponents 
and amplitudies, presented in Ref. 7. 

near the critical point. The analysis of residuals for other fits obtained in 
Ref. 7 leads to the same conclusion. So the asymptotic region (where the 
contribution of corrections Bp+~r p+~, Bp+2~zP+2~,..., does not exceed 
the experimental error) is found to be much closer to the critical point than 
the experimentally accessible temperature range r > 10-4. 

The main assumption of our treatment is that the asymptotic region 
is within the experimentally attainable temperature interval. We have 

- endeavored in this research to determine fl0 and other exponents directly 
from the experimental data. For this purpose the data were fitted by the 
equations 

Aps = Bo rp0 + B2r p2 + B4r p4 + ... (7) 

/ I pd  ---- B]r p' + B3  ~'#3 + .. .  (8) 

where exponents fl; and coefficients Bi are adjustable parameters. 
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The total uncertainty of the density measurements in Ref. 6 was 
estimated as (2-3) x 10-4 g. cm-3, but the accuracy of experimental deter- 
mination of the critical parameters Tc and Pc was not mentioned. Thus, in 
Ref. 7 the values o Tc and Pc were selected during the fitting of the 
experimental data. Hence in the present paper the critical parameters Tc 
and Pc were also refined during the fitting. 

The following three criteria were used for choosing a correct description 
for the experimental data. The first criterion concerns the independence of 
the critical exponents from the interval of the fit in the asymptotic regions 
for both fl0 and ill- The second criterion involves the minimization of the 
residual sum-of-squares S of the fit for varying values of the critical 
parameters. The third criterion deals with the analysis of the temperature 
dependence of the scaling function: 

I~P,.~I = l ( p , , g - p ~ ) / ( p ~ r P ° ) l  = I _ A p ~  +APr i l  r -p° (9) 

We discuss these criteria in detail. 
The first criterion for the determination of the value of critical expo- 

nent flo is that the critical exponent be independent of the interval of the 
fit. For example, Fig. 2 shows the temperature dependence of the effective 
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Fig. 2. Temperature dependence of the effec- 
tive exponent flefr for the coexistence curve of 
HD, fitted by a one-term power law [Eq. (10)] 
in different temperature intervals, and for T¢ = 
35.9585 (O),  35.9578 (.), and 35.9569 ( 0 )  K. 
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values of the critical exponent flefr obtained by fitting the experimental data 
for HD by a single-term power law with amplitude Bert: 

Ap, = B~rrr/~c~ (10) 

in partial temperature ranges formed by progressively omitting, one point 
at a time, the data point farthest from To. It is shown in Fig. 2 that at 
Tc=35.9578 K, the exponent flo=0.352+0.001 is independent of the 
approximation interval within the limits of random error. For other values 
of T~, a curvature is observed as the critical point is approached. Similar 
conclusions can also be drawn about the behavior of the coexistence curves 
of Ne, N 2, and C2H 4. 

Our T¢ and fl0 values are also supported by Fig. 3, which shows the 
dependence of fl~fr on the choice of T c for three different sets of experimen- 
tal data for Ne. It can be seen from Fig. 3a that all three curves intersect 
at a single point corresponding to fl~rr=fl0 = 0.3575 and Tc =44.481 K. 

The same figure also illustrates the second criterion used by us, 
namely, the fact that the minimum value of the statistical criterion Z 2 [ 8 ], 
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(a) Dependence of flefr on Tc according 
to Eq. (10) for Ne in three temperature ranges: 
43.769<T<44.45 K (*), 44.241 <T<44 .45K 
(©), and 44.394< T<44.45 K (0) .  (b) Plot of 
;(2 vs T~ for approximation of the experimental 
data in the temperature range 44.241 < T <  
44.45 K. 
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Table I. Results of Fits of Eq. (7) with One Term 

Substance/ 
number. 
of exp. Temperature interval (K) 
points (reduced temperature) r0 Bo To, (K) ~Tc (K) 

C2H4/35 276.8537- 282.2766 0.355 1.937 282.384 +0.009 
(1.96 x 10-2-3.55 x 10 -4) 

Ne/l 9 42.4825--44.45 0.3575 1.7973 44.481 + 0.002 
(2.28 x 10-2-7.0 x I0-4) 

HD/31 35.7460-35.9532 0.352 1.5929 35.9578 +0.0008 
(5.89 x 10 -3-1.3 x 10 -4) 

N_,/42 123.9683-126.1637 0.355 1.8340 126.220 +0.0057 
(I. 8 x 10-2-4.0 x 10 -4) 

associated with the residual sum-of-squares, also corresponds to 
Tc =44.481 K and flerr=flo =0.3575 (Fig. 3b). 

Such analysis was performed for the experimental data for Ne, HD, 
N2, and C2H4 and gave similar results, which are presented in Table I. In 
the sixth column in Table I, the temperature differences ATe are listed and 
they indicate how much the values T¢,, obtained in our approximation,  
differ from T¢ values used in Ref. 7 for the fit by Eq. ( 1 ) with flo in the range 
of 0.325 to 0.3272. It is seen from Table I that an increase in T¢ by values 
from 0.0008 to 0.009 K leads to the same flo values for all four substances: 
r0 = 0.355 + 0.003, which is similar to flo obtained earlier in our laboratory 
for c 6 n  6 ['9], C5H12 [10], C7H16 [11] ,  and other substances [12-14] .  

The third criterion is necessary for the control of the correctness of the 
critical exponent flo determination. According to modern  concepts of  the 
critical behavior  of a substance an asymptot ic  temperature range must exist 
close to the critical point. If  the value flo is determined correctly and it 
corresponds to experimental data  the scaling function I~,gl has the form 

l¢,,gl = l ( p , , g -  Pe)/ (P~rP°) I  

= I+Bo+B~rP' -#°+B,_rP' - -P°+. . .  I (11) 

But if the critical exponent of  the coexistence curve is incorrect (let us 
mark  it as fl ,) ,  the form of scaling function ~Lg will be another: 

= [ ___ Bo rp°- p• + B, r p' -P* _ B2~ p-' - P* + . . .  I (12) 
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The exponent of the leading term in Eq. (12) may be positive, 
negative, or equal zero. If fl ,  < ( > ) fl0, the leading term has a temperature 
dependence. 

For  the investigated substances, the order parameter experimental 
data were fitted by a one-term equation with fl0 ~ 0.355. This means that 
the first correction term B2r p'- in Eq. (7) equals zero and a region of sym- 
metric behavior of the scaling function Eq. (12) must exist near the critical 
point for the liquid and vapor branches of the coexistence curve. The plots 
of I~1,~1 vs ~pt-po will be linear and will converge symmetrically to the 
amplitude B0. Such behavior is not observed for scaling functions for 
branches calculated, for example, for neon with the parameters flo = 0.3272, 
Tc=44.479K, and pc=0.484 g . cm -3 obtained in Ref. 7 and presented 
in Fig. 4a (curves 1 and 2) and for HD with parameters fl0=0.325, 
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Fig. 4. Temperature dependences of scaling functions 
Iff~.gl for the liquid (I-1) and vapor (A)  branches, 
defined by Eq. (9) for Ne (a) and HD (b). For both 
fluids curves 1 and 2 are calculated with parameters flo 
and Tc obtained in Ref. 7, while curves 3 and 4 are 
calculated with fl0 and To, obtained in this paper. 
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T c = 35.957 K, and Pc =0.0481 g. cm -3 presented in Fig. 4b (curves 1 and 
.2). In both cases the value fll =0.89 was used for the calculation of the 
value r p'-p° (abscissa in Figs. 4a and b). The evident curvature toward 
lower values of B0 indicates, in our opinion, an improper choice of the 
critical exponent values fl0 =0.3272 (Ne), flo = 0.325 (HD), and the corre- 
sponding values of the critical temperature. This curvature means too that 
there is a temperature dependence of the leading term in Eq.(12). 
Naturally, when the critical parameters and critical indices for Ne and HD 
from Refs. 6 and 7 are used, one should expect neither symmetrical nor 
linear behavior of the coexistence curve branches. 

Also, in Fig. 4a (curves 3 and 4) the scaling function ~b ~,g for Ne with 
Tc = 44.481 K, flo = 0.3575, and fl~ = 0.704 obtained in this paper is shown. 
The intersection of liquid and vapor branches at r = 0  is observed for 
pc= 0 .4836g . c m -3, which differs from the value pc=0.484 g . c m  -3 
presented in Ref. 6 by the very small amount of 0.0004 g- cm-3 

A similar analysis of the temperature dependence of the scaling func- 
tions was also carried out for HD (see Fig. 4b), N,_, and C2H 4 and is 
evidence, in our opinion, that the asymptotic region is experimentally 
attainable for these substances. 

With respect to the temperature dependence of the diameter, the 
experimental determination of the critical exponent fl, is less accurate. 
Careful statistical analysis of experimental data for the HD diameter by 
Eq. (8) demonstrated enormous influence of the critical density value Pc on 
the magnitude of the exponent fl~ in Eq. (8) (see Ref. 5): a change in Pc by 
1 x 10 -5 g . c m  -3 causes a change in fl~n from 0.75 to 0.90. Hence only 
simultaneous Pc and fl, definition during the experimental data approxima- 
tion by Eq. (8) with critical exponents and amplitudes as free parameters 
permits to obtain the best fit with fl~ =0.704-+0.120=2flo(flo=0.352), 
f13 = 1.43 -+ 058 ~ 2fl~. (The uncertainty assigned to fl. does not include the 
uncertainty connected with the experimental error of the critical density.) 
Poor knowledge of the critical density may be a reason for the "specific" 
behavior of the HD coexistence curve diameter attributed to quantum 
effects [6]. 

3. CONCLUSIONS 

In addition to the well-known poor convergence of the Wegner expan- 
sion, we point out that our analysis of these experimental data does not 
yield the Ising exponent value. 

The fitting methods presented in this paper lead to the value of the 
critical exponent fl=flo=0.355 +0.003 for a number of one-component 
fluids. A common value of fl = 0.355, with slight adjustment of T c, given a 
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simpler and more accurate description of the coexistence curve than a 
Wegner expansion with Ising exponents. 

In view of our results, we hope on further investigation of coexistence 
curve behavior near the liquid-gas critical point by means of both unpre- 
judiced analysis of precise experimental data and theoretical efforts in this 
field. 
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